約数・倍数・整数の割り算と余り・合同式
大学入試問題#912「解答を綺麗にする時間がなかった」 #自治医科大学2024
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
この動画を見る
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
大学入試問題#911「私学医学部では出題必須か!?」 #自治医科大学2024
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
この動画を見る
実数$x,y$が$x^2+y^2=1$を満たすとき、$5x^2+4xy+y^2$の最大値を$M,$最小値を$m$とする。
$\displaystyle \frac{(M-m)^2}{4}$の値を求めよ。
出典:2024年自治医科大学
大学入試問題#906「色んな要素がモリモリ問題」昭和大学医学部(2012)
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師:
ますただ
問題文全文(内容文):
正の数$a,b$が$a^3+b^3=5$を満たすとき、$a+b$のとりうる値の範囲を求めよ。
出典:2012年昭和大学医学部
この動画を見る
正の数$a,b$が$a^3+b^3=5$を満たすとき、$a+b$のとりうる値の範囲を求めよ。
出典:2012年昭和大学医学部
大学入試問題#897「解法の迷走」 #北海道大学(2024)
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。
出典:2024年北海道大学後期
この動画を見る
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。
出典:2024年北海道大学後期
大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
この動画を見る
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
これなんで? フルは↑
単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなんで? フルは↑
【問題文】20×20
この動画を見る
これなんで? フルは↑
【問題文】20×20
福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
「20+20=200」になる理由を解説
単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る
「20+20=200」になる理由を解説しています。
福田の数学〜神戸大学2024年文系第2問〜さいころの目と約数に関する確率
単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
福田の数学〜神戸大学2024年理系第3問〜さいころの目と約数に関する確率
単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
福田のおもしろ数学155〜6の倍数である証明
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
この動画を見る
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
福田の数学〜大阪大学2024年理系第5問〜互いに素な整数の個数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
この動画を見る
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
福田のおもしろ数学146〜3m+5nで作れない自然数を求める
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
この動画を見る
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
福田の数学〜慶應義塾大学2024年商学部第2問(3)〜最小公倍数の変化と個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
この動画を見る
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
大学入試問題#818「なんてことはない問題」 #京都大学(1979)
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{2^n}{n} \gt n$を満たす自然数$n$の範囲を求めよ。
出典:1979年京都大学 入試問題
この動画を見る
$\displaystyle \frac{2^n}{n} \gt n$を満たす自然数$n$の範囲を求めよ。
出典:1979年京都大学 入試問題
整数問題 城北高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
20以下の自然数nのうち
$(n+1)^2+(n+3)^2+(n+5)^2$が7の倍数となるものは何個?
城北高等学校
この動画を見る
20以下の自然数nのうち
$(n+1)^2+(n+3)^2+(n+5)^2$が7の倍数となるものは何個?
城北高等学校
福田の数学〜一橋大学2024年文系第1問〜シグマが2024になるような2変数の値
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $\displaystyle\sum_{k=1}^mk(n-2k)$=2024 を満たす正の整数の組($m$, $n$)を求めよ。
この動画を見る
$\Large\boxed{1}$ $\displaystyle\sum_{k=1}^mk(n-2k)$=2024 を満たす正の整数の組($m$, $n$)を求めよ。
整数問題 修道高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
n(n+1)が88の倍数になるような正の整数nのうち最小のものは?
修道高等学校
この動画を見る
n(n+1)が88の倍数になるような正の整数nのうち最小のものは?
修道高等学校
大学入試問題#795「ガウス記号入れて、採点楽にしたいのか!?」 #富山大学(2022) #ガウス記号
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師:
ますただ
問題文全文(内容文):
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
この動画を見る
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$
出典:2022年富山大学 入試問題
【高校数学】整数の性質 方程式の問題ではこうやって範囲を絞り込もう!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$xy+yz+zx=xyz$を満たす自然数
$x,y,z$の組をすべて求めよ。
この動画を見る
方程式$xy+yz+zx=xyz$を満たす自然数
$x,y,z$の組をすべて求めよ。
【高校数学】整数の性質 約数の総和に関する問題はこうやって解く!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
この動画を見る
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
福田の数学〜北海道大学2024年文系第1問〜約数の個数と総和
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
この動画を見る
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
この動画を見る
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
大学入試問題#779「コメントするなら普通の問題」 青山学院大学(2021) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ n^2+2n+16 }$ が整数となるような整数$n$をすべて求めよ
出典:2021年青山学院大学
この動画を見る
$\sqrt{ n^2+2n+16 }$ が整数となるような整数$n$をすべて求めよ
出典:2021年青山学院大学
福田の数学〜慶應義塾大学2024年薬学部第1問(5)〜整数解と素数の性質
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
約数の個数とその総和 2024明大中野
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。
2024明治大学付属中野高等学校
この動画を見る
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。
2024明治大学付属中野高等学校
2024山口大 1の10乗根のナイスな問題
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ
出典:2024年山口大学数学 過去問
この動画を見る
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ
出典:2024年山口大学数学 過去問
一橋の問題をちょっと変えてみた
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$100m^2-49n^2=20!$を満たす$(m,n)$の組は何組?
この動画を見る
$m,n$正の整数
$100m^2-49n^2=20!$を満たす$(m,n)$の組は何組?