約数・倍数・整数の割り算と余り・合同式
約数・倍数・整数の割り算と余り・合同式
福田のおもしろ数学569〜奇数回握手をした人の人数は偶数か

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
すべての人が何人かの人と握手したとする。
このとき「奇数回握手をした人」を数えると
その人数は必ず偶数になることを
証明してください。
この動画を見る
すべての人が何人かの人と握手したとする。
このとき「奇数回握手をした人」を数えると
その人数は必ず偶数になることを
証明してください。
福田の数学〜早稲田大学2025社会科学部第1問〜n^pの1の位

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
自然数$n,p$に対して、$n^p$の$1$の位の数を
$f_p(n)$で表す。次の問いに答えよ。
(1)$f_2(n)$の取りうる値をすべて求めよ。
(2)$f_5(n)-f_1(n)$の値を求めよ。
(3)$f_{100}(n)$の取りうる値をすべて求めよ。
$2025$年早稲田大学社会科学部過去問題
この動画を見る
$\boxed{1}$
自然数$n,p$に対して、$n^p$の$1$の位の数を
$f_p(n)$で表す。次の問いに答えよ。
(1)$f_2(n)$の取りうる値をすべて求めよ。
(2)$f_5(n)-f_1(n)$の値を求めよ。
(3)$f_{100}(n)$の取りうる値をすべて求めよ。
$2025$年早稲田大学社会科学部過去問題
【カイホウの検討…!】整数:文教大学付属高等学校~全国入試問題解法

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連続する4つの自然数がある。それぞれの数を2乗したものを足すと294になった。このとき4つの自然数の中で最も小さいものを答えなさい。
この動画を見る
連続する4つの自然数がある。それぞれの数を2乗したものを足すと294になった。このとき4つの自然数の中で最も小さいものを答えなさい。
福田のおもしろ数学527〜最大公約数と最小公倍数からxとyの組の個数を求める

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$gcd(x,y)=5!$
$Icm(x,y)=50!$
$(x\leqq y)$
を満たす自然数の組
$(x,y)$は何組あるか?
この動画を見る
$gcd(x,y)=5!$
$Icm(x,y)=50!$
$(x\leqq y)$
を満たす自然数の組
$(x,y)$は何組あるか?
福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$n$を$2$以上の自然数とする。次の問いに答えよ。
(1)$n^3-n$は$6$のばいすうであることを示せ。
(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。
(3)$n$に関する数学的帰納法を用いて、
$n^5+4n$は$5$の倍数であることを示せ。
(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は
$120$の倍数であることを示せ。
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{4}$
$n$を$2$以上の自然数とする。次の問いに答えよ。
(1)$n^3-n$は$6$のばいすうであることを示せ。
(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。
(3)$n$に関する数学的帰納法を用いて、
$n^5+4n$は$5$の倍数であることを示せ。
(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は
$120$の倍数であることを示せ。
$2025$年立教大学理学部過去問題
integer problem : Shirotan's cute kawaii math show

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
整数xに6を加えると整数mの平方数
xから17を引くと整数nの平方 m、n、xはいくつ?
この動画を見る
整数xに6を加えると整数mの平方数
xから17を引くと整数nの平方 m、n、xはいくつ?
福田の数学〜一橋大学2025文系第1問〜正の約数の個数と関数の最大値

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
【数B】【数列】自然数の式の証明2 ※問題文は概要欄

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
この動画を見る
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
【数B】【数列】自然数の式の証明1 ※問題文は概要欄

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
福田のおもしろ数学471〜整数が整数で割りきれる条件

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$n$は正の整数とする。
$2025n+510$は$20n+2$で割り切れる。
このような$n$をすべて求めよ。
この動画を見る
$n$は正の整数とする。
$2025n+510$は$20n+2$で割り切れる。
このような$n$をすべて求めよ。
福田の数学〜慶應義塾大学理工学部2025第1問(2)〜6または8または9で割り切れる数の個数

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)$n$を自然数とする。
$1$から$n$までの自然数の中で$6$または$8$または
$9$で割り切れるものの個数を$a_n$で表す。
このとき、$a_{30}=\boxed{ウ}$となる。
また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。
$2025$年慶應義塾大学理工学部過去問題
この動画を見る
$\boxed{1}$
(2)$n$を自然数とする。
$1$から$n$までの自然数の中で$6$または$8$または
$9$で割り切れるものの個数を$a_n$で表す。
このとき、$a_{30}=\boxed{ウ}$となる。
また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。
$2025$年慶應義塾大学理工学部過去問題
福田のおもしろ数学462〜2n+1角形の頂点と辺に異なる整数を割り当てて辺上の合計を等しくする方法

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2n+1$個の頂点をもつ多角形がある。
この多角形の頂点と辺の中点に数
$1,2,3,\cdots,4n+2$をすべて使用してラベルをつけ、
各辺に割り当てられた
$3$つの数の和が等しくなるようにせよ。
この動画を見る
$2n+1$個の頂点をもつ多角形がある。
この多角形の頂点と辺の中点に数
$1,2,3,\cdots,4n+2$をすべて使用してラベルをつけ、
各辺に割り当てられた
$3$つの数の和が等しくなるようにせよ。
福田のおもしろ数学442〜nが[√n]で割り切れるようなn

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt n$が整数ではないにも関わらず、
$n$が$\left[\sqrt n\right]$で割り切れるような自然数$n$が
無限に存在することを示せ。
この動画を見る
$\sqrt n$が整数ではないにも関わらず、
$n$が$\left[\sqrt n\right]$で割り切れるような自然数$n$が
無限に存在することを示せ。
福田の数学〜京都大学2025文系第1問(2)〜整数の割り算で割り切れる条件

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)$n^4+6n^2+23$が$n^2+n+3$で
割り切れるような正の整数$n$をすべて求めよ。
$2025$年京都大学文系過去問題
この動画を見る
$\boxed{1}$
(2)$n^4+6n^2+23$が$n^2+n+3$で
割り切れるような正の整数$n$をすべて求めよ。
$2025$年京都大学文系過去問題
福田のおもしろ数学423〜9999を連続する整数の平方で作る方法

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
この動画を見る
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
福田の数学〜東京大学2025理系第4問〜関数の値が平方数となる条件

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
この問いでは、
$0$以上の整数の$2$乗になる数を平方数と呼ぶ。
$a$を正の整数とし、
$f_a (x) = x^2+x-a$とおく。
(1)$n$を正の整数とする。
$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。
(2)$f_a (n)$が平方数となる正の整数$n$の個数を
$N_a$とおく。
次の条件$(i),(ii)$が同値であることを示せ。
$(i)\quad N_a=1$である。
$(ii)\quad 4a+1$は素数である。
$2025$年東京大学理系過去問題
この動画を見る
$\boxed{4}$
この問いでは、
$0$以上の整数の$2$乗になる数を平方数と呼ぶ。
$a$を正の整数とし、
$f_a (x) = x^2+x-a$とおく。
(1)$n$を正の整数とする。
$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。
(2)$f_a (n)$が平方数となる正の整数$n$の個数を
$N_a$とおく。
次の条件$(i),(ii)$が同値であることを示せ。
$(i)\quad N_a=1$である。
$(ii)\quad 4a+1$は素数である。
$2025$年東京大学理系過去問題
福田のおもしろ数学421〜2つの条件を満たす素数p,qを求める

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$q^2-4$が$p$で割り切れ
$p^2-1$が$q$で割り切れる
ような素数$p,q$は?
この動画を見る
$q^2-4$が$p$で割り切れ
$p^2-1$が$q$で割り切れる
ような素数$p,q$は?
福田のおもしろ数学419〜条件を満たす自然数nが存在するような2つの素数の差を求める

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
この動画を見る
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
福田のおもしろ数学418〜条件を満たす3つの数を割りきれるようにすることが可能か不可能かの考察

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。
$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して
$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ
$\overline{ca}$が$b$で割り切れることは可能か?
この動画を見る
十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。
$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して
$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ
$\overline{ca}$が$b$で割り切れることは可能か?
福田のおもしろ数学407〜a^3+b^3+c^3-3abcの取り得る最小の正の値

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の整数$a,b,c$に対して
$a^3+b^3+c^3-3abc$
が取り得る最小の正の値を求めよ。
またそのときの$a,b,c$の値は?
この動画を見る
正の整数$a,b,c$に対して
$a^3+b^3+c^3-3abc$
が取り得る最小の正の値を求めよ。
またそのときの$a,b,c$の値は?
福田のおもしろ数学400〜2項展開の係数と次数に関する個数

単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\left(\sqrt x+\dfrac{1}{2\sqrt[4]{x}}\right)^n$の展開式を降順に並べたとき、
最初の3項の$x$の係数が等差数列になった。
この展開式の中に$x$の次数が整数となる
項は何個あるか?
この動画を見る
$\left(\sqrt x+\dfrac{1}{2\sqrt[4]{x}}\right)^n$の展開式を降順に並べたとき、
最初の3項の$x$の係数が等差数列になった。
この展開式の中に$x$の次数が整数となる
項は何個あるか?
福田のおもしろ数学399〜20002000以下で0と2以外の数字を使わない正の整数の個数

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$20002000$以下で$0$と$2$以外の数字を
含まない正の整数は何個あるか?
この動画を見る
$20002000$以下で$0$と$2$以外の数字を
含まない正の整数は何個あるか?
福田のおもしろ数学386〜ルートの付いた不定方程式の解

単元:
#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師:
福田次郎
問題文全文(内容文):
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
この動画を見る
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
この動画を見る
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
素数を扱う整数問題の良問!分からなければ実験あるのみ!【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
この動画を見る
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
福田のおもしろ数学377〜3つの素数の和と積の一方が他方の101倍になる条件

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$p, q, rを素数とする。p+q+rとpqrの一方が他方の101倍になるような素数の組(p, q, r)をすべて求めて下さい。$
この動画を見る
$p, q, rを素数とする。p+q+rとpqrの一方が他方の101倍になるような素数の組(p, q, r)をすべて求めて下さい。$
福田のおもしろ数学371〜初項が素数で漸化式で定義された数列が素数でない項をもつ証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
この動画を見る
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
福田のおもしろ数学370〜フェルマーの小定理の証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
この動画を見る
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
この問題できる?

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{24n}$ が整数となる自然数 $n$ のうち最も小さいものを求めよ。
この動画を見る
$\sqrt{24n}$ が整数となる自然数 $n$ のうち最も小さいものを求めよ。
福田のおもしろ数学367〜3変数の不定方程式の整数解を求める考え方

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
この動画を見る
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
