三角関数
福田のわかった数学〜高校2年生073〜三角関数(12)三角関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生071〜三角関数(10)三角方程式の解の個数
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(10) 解の個数\hspace{120pt}\\
\\
3\cos^2x-\sin x-a=0\hspace{100pt}\\
の0 \leqq x \leqq \frac{3\pi}{2}の範囲にある解の個数を、実数aの値によって分類せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(10) 解の個数\hspace{120pt}\\
\\
3\cos^2x-\sin x-a=0\hspace{100pt}\\
の0 \leqq x \leqq \frac{3\pi}{2}の範囲にある解の個数を、実数aの値によって分類せよ。
\end{eqnarray}
福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解
単元:
#数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(9) 三角方程式の共通解\\
次の連立方程式0 \leqq x \lt 2\piに共通解をもつとき\\
aの値とそのときの共通解を求めよ。\\
\left\{
\begin{array}{1}
\sin2x+a\cos x=0\\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(9) 三角方程式の共通解\\
次の連立方程式0 \leqq x \lt 2\piに共通解をもつとき\\
aの値とそのときの共通解を求めよ。\\
\left\{
\begin{array}{1}
\sin2x+a\cos x=0\\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}
福田のわかった数学〜高校2年生069〜三角関数(8)三角不等式
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(8) 三角不等式\hspace{50pt}\\
aは2以上の整数、0 \lt x \leqq \piのとき次の連立不等式を解け。\\
\left\{
\begin{array}{1}
\cos x \leqq \cos2ax \ldots①\\
\sin2ax \leqq 0 \ldots②\\
\end{array}
\right.
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(8) 三角不等式\hspace{50pt}\\
aは2以上の整数、0 \lt x \leqq \piのとき次の連立不等式を解け。\\
\left\{
\begin{array}{1}
\cos x \leqq \cos2ax \ldots①\\
\sin2ax \leqq 0 \ldots②\\
\end{array}
\right.
\end{eqnarray}
【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
この動画を見る
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
【数Ⅱ】三角関数:方程式sin(θ+40°)=sinθ(ただし0°≦θ≦90°)をみたすθを求めよ。
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
この動画を見る
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(7) 三角方程式\\
0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\piにおいて\\
\cos y=\sin2x のグラフを描け。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(7) 三角方程式\\
0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\piにおいて\\
\cos y=\sin2x のグラフを描け。
\end{eqnarray}
福田のわかった数学〜高校2年生067〜三角関数(6)三角方程式
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(6) 三角方程式\\
次の三角方程式の一般解と0 \leqq \theta \lt 2\piにおける解を求めよ。\\
\cos4\theta=\sin(\theta+\frac{\pi}{4})
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(6) 三角方程式\\
次の三角方程式の一般解と0 \leqq \theta \lt 2\piにおける解を求めよ。\\
\cos4\theta=\sin(\theta+\frac{\pi}{4})
\end{eqnarray}
福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。\\
また、各辺の長さは、PQ=1, QR=8, RS=4, SP=7であり、\\
角Pの大きさを\thetaとする。ただし、0 \lt \theta \lt \piとする。\\
このとき円Cの直径は\ \boxed{\ \ イ\ \ },\cos\theta=\boxed{\ \ ウ\ \ } である。
\end{eqnarray}
2021立教大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。\\
また、各辺の長さは、PQ=1, QR=8, RS=4, SP=7であり、\\
角Pの大きさを\thetaとする。ただし、0 \lt \theta \lt \piとする。\\
このとき円Cの直径は\ \boxed{\ \ イ\ \ },\cos\theta=\boxed{\ \ ウ\ \ } である。
\end{eqnarray}
2021立教大学経済学部過去問
福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎
単元:
#数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(4) 三角不等式の基礎\\
(1)\sin\theta \gt -\frac{1}{2} (2)\cos\theta \leqq \frac{\sqrt3}{2} (3)\tan\theta \gt -1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(4) 三角不等式の基礎\\
(1)\sin\theta \gt -\frac{1}{2} (2)\cos\theta \leqq \frac{\sqrt3}{2} (3)\tan\theta \gt -1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面において、放物線y=x^2上の点でx座標がp,p+1,p+2である点を\\
それぞれP,Q,Rとする。また、直線PQの傾きをm_1、直線PRの傾きをm_2、\\
\angle QPR=\thetaとする。\\
\\
(1)m_1,\ m_2をそれぞれ\ p\ を用いて表せ。\\
(2)pが実数全体を動くとき、m_1m_2の最小値を求めよ。\\
(3)\tan\thetaを\ p\ を用いて表せ。\\
(4)pが実数全体を動くとき、\thetaが最大になる\ p\ の値を求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 座標平面において、放物線y=x^2上の点でx座標がp,p+1,p+2である点を\\
それぞれP,Q,Rとする。また、直線PQの傾きをm_1、直線PRの傾きをm_2、\\
\angle QPR=\thetaとする。\\
\\
(1)m_1,\ m_2をそれぞれ\ p\ を用いて表せ。\\
(2)pが実数全体を動くとき、m_1m_2の最小値を求めよ。\\
(3)\tan\thetaを\ p\ を用いて表せ。\\
(4)pが実数全体を動くとき、\thetaが最大になる\ p\ の値を求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(3) 三角方程式の基礎\hspace{40pt}\\
(1)\sin\theta=-\frac{1}{2} (2)\cos\theta=\frac{\sqrt3}{2} (3)\tan\theta=-1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(3) 三角方程式の基礎\hspace{40pt}\\
(1)\sin\theta=-\frac{1}{2} (2)\cos\theta=\frac{\sqrt3}{2} (3)\tan\theta=-1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生063〜三角関数(2)三角関数の定義
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(2) 三角関数の定義\\
一般角\ \theta\ に対して\\
\sin\theta, \cos\theta\\
の定義を説明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(2) 三角関数の定義\\
一般角\ \theta\ に対して\\
\sin\theta, \cos\theta\\
の定義を説明せよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系080〜グラフを描こう(2)三角関数のグラフ
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(2)\hspace{50pt}\\
y=\cos2x-2\cos x (0 \leqq x \leqq 2\pi)\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(2)\hspace{50pt}\\
y=\cos2x-2\cos x (0 \leqq x \leqq 2\pi)\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校2年生062〜三角関数(1)三角関数のグラフ
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(1) 三角関数のグラフ\\
下の図はy=a\sin(bx-c)\ のグラフである。\\
a,b,c,dの値を求めよ。ただし、a \gt 0,\ b \gt 0,\ 0 \lt c \lt 2\pi\\
とする。(※図は動画参照)
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(1) 三角関数のグラフ\\
下の図はy=a\sin(bx-c)\ のグラフである。\\
a,b,c,dの値を求めよ。ただし、a \gt 0,\ b \gt 0,\ 0 \lt c \lt 2\pi\\
とする。(※図は動画参照)
\end{eqnarray}
【高校数学】3倍角の公式~簡単に導出できます~ 4-13.5【数学Ⅱ】
福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小
単元:
#数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}
2021明治大学理工学部過去問
福田のわかった数学〜高校1年生061〜三角形の形状決定問題(2)
単元:
#数Ⅰ#数Ⅱ#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(2)\\
次の等式が成り立つとき、\triangle ABCはどんな形の三角形か。\\
\sin A\cos A=\sin B\cos B
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(2)\\
次の等式が成り立つとき、\triangle ABCはどんな形の三角形か。\\
\sin A\cos A=\sin B\cos B
\end{eqnarray}
福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件
単元:
#数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 極値(1)\\
f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}の範囲で\\
極大値をもつように定数aの値の範囲を定めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 極値(1)\\
f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}の範囲で\\
極大値をもつように定数aの値の範囲を定めよ。
\end{eqnarray}
関数の問題にみえて実は。。新田高校
単元:
#数学(中学生)#数Ⅱ#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点Pの座標は?
*図は動画内参照
新田高等学校
この動画を見る
点Pの座標は?
*図は動画内参照
新田高等学校
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}\ のとき、次の関数が最大値をとるときのxの値を求めよ。\\
y=\sin x+\cos^2x
\end{eqnarray}
2021中央大経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}\ のとき、次の関数が最大値をとるときのxの値を求めよ。\\
y=\sin x+\cos^2x
\end{eqnarray}
2021中央大経済学部過去問
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)
単元:
#三角関数#微分法#数学(高校生)#数Ⅲ
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
この動画を見る
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 2(\cos\theta-\sin\theta)^2=1 を満たす\thetaを0 \leqq \theta \leqq \pi の範囲で求めると\ \boxed{\ \ イ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 2(\cos\theta-\sin\theta)^2=1 を満たす\thetaを0 \leqq \theta \leqq \pi の範囲で求めると\ \boxed{\ \ イ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問