微分とその応用 - 質問解決D.B.(データベース) - Page 7

微分とその応用

【全ての問題は概要欄】大学入試問題#79 大阪大学(2020 改) 微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x$
関数$f(x)=(x+1)^{\frac{1}{x+1}}$の最大値を求めよ。

出典:2020年大阪大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系106〜変化率(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(1)
$a^x \geqq x$
が任意の正の実数xに対して成り立つような
正の定数aの値の範囲を求めよ。  
この動画を見る 

福田のわかった数学〜高校3年生理系102〜大小比較(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
この動画を見る 

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(6)
$0 \lt a \lt b \lt \frac{\pi}{2}$のとき、
$\frac{a}{b} \lt \frac{\sin a}{\sin b}$が成り立つことを証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系098〜不等式の証明(5)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(5)
$b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系096〜不等式の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(3)
$\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(2)
$x\log x \geqq (x-1)\log(x+1) (x \geqq 1)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系094〜不等式の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(1)
$\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(14)
$y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)$のグラフを描け。凹凸、漸近線も調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(13)

$y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)$
のグラフを描け。凹凸、漸近線を調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(11)

$y=\frac{x^3}{x^2-1}$ のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系088〜グラフを描こう(10)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(10)

$y=\frac{e^x}{x-1}$         
のグラフを描け。ただし凹凸、漸近線を調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系087〜グラフを描こう(9)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(9)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t\cos t-\sin t\\
y=t\sin t+\cos t
\end{array}
\right.
(0 \leqq t \leqq 2\pi)
\end{eqnarray}$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

福田のわかった数学〜高校3年生理系086〜グラフを描こう(8)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(8)

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right.
\end{eqnarray}$
のグラフを描け。
ただし凹凸は調べなくてよい。
この動画を見る 

福田のわかった数学〜高校3年生理系085〜グラフを描こう(7)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$グラフを描こう(7)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$

のグラフを描け。
凹凸は調べなくてよい。
この動画を見る 

福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(3)

$y=x(\log x-1)^2$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

x^πを微分せよ

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$y=x^{\pi}$を微分せよ.
この動画を見る 

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ Oを原点とする座標平面上の曲線$y=\log x$を$C$とする。正の実数$t$に対し、
曲線C上の点$P(t,\log t)$におけるCの法線Lの傾きは$\boxed{\ \ か\ \ }$である。Lに平行な
単位ベクトル$\overrightarrow{ n }$で、その$x$成分が正であるものは$\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })$である。
さらに、$r$を正の定数とし、点Qを$\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }$により定めると、
Qの座標は$(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })$となる。ここで点Qのx座標とy座標をtの関数と見て、
それぞれ$X(t),\ Y(t)$とおくと$X(t),\ Y(t)$の導関数を成分とするベクトル$(X'(t),\ Y'(t))$
はrによらないベクトル$(1,\ \boxed{\ \ さ\ \ })$と平行であるか、零ベクトルである。
定数$r$の取り方によって関数$X(t)$の増減の様子は変わる。$X(t)$が区間$t \gt 0$で
常に増加するようなrの値の範囲は$\boxed{\ \ し\ \ }$である。また、$r=2\sqrt2$のとき、$X(t)$は
区間$\boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }$で減少し、区間$0 \lt t \leqq \boxed{\ \ す\ \ }$と区間$t \geqq \boxed{\ \ せ\ \ }$で増加する。

2021明治大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
この動画を見る 

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(2)
$f(x)=x^2e^{-|x-a|} (a \gt 2)$の極値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、

$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。

$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群

$⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}$

$\boxed{\ \ エ\ \ }$の解答群

$⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}$

2021明治大学全統過去問
この動画を見る 
PAGE TOP