微分とその応用
福田のわかった数学〜高校3年生理系086〜グラフを描こう(8)媒介変数表示のグラフ
単元:
#平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(8)\\
\\
\left\{
\begin{array}{1}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right. のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(8)\\
\\
\left\{
\begin{array}{1}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right. のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校3年生理系085〜グラフを描こう(7)媒介変数表示のグラフ
単元:
#平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(7)\\
\\
\left\{
\begin{array}{1}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right. (-2 \leqq t \leqq 1)\\
\\
のグラフを描け。
凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(7)\\
\\
\left\{
\begin{array}{1}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right. (-2 \leqq t \leqq 1)\\
\\
のグラフを描け。
凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ
単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(3)\hspace{80pt}\\
\\
y=x(\log x-1)^2\hspace{30pt}\\
\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(3)\hspace{80pt}\\
\\
y=x(\log x-1)^2\hspace{30pt}\\
\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
x^πを微分せよ
福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減
単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}
2021明治大学理工学部過去問
福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点
単元:
#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 連続関数f(x)は区間\ x \geqq 0で正の値をとり、区間\ x \gt 0で微分可能\\
かつf'(x)≠0であるとする。さらに、実数の定数aと関数f(x)が\\
\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)\\
を満たすとする。このとき\\
a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }\\
である。また、曲線\ y=f(x)\ (x \gt 0)の変曲点のx座標をpとすると\\
p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}\ である。ただし、\log xはxの自然対数である。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 連続関数f(x)は区間\ x \geqq 0で正の値をとり、区間\ x \gt 0で微分可能\\
かつf'(x)≠0であるとする。さらに、実数の定数aと関数f(x)が\\
\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)\\
を満たすとする。このとき\\
a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }\\
である。また、曲線\ y=f(x)\ (x \gt 0)の変曲点のx座標をpとすると\\
p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}\ である。ただし、\log xはxの自然対数である。
\end{eqnarray}
福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(1)\\
\\
y=\frac{x^2}{x-1}\ のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(1)\\
\\
y=\frac{x^2}{x-1}\ のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める
単元:
#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 極値(2)\\
f(x)=x^2e^{-|x-a|} (a \gt 2)\ の極値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 極値(2)\\
f(x)=x^2e^{-|x-a|} (a \gt 2)\ の極値を求めよ。
\end{eqnarray}
福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積
単元:
#平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面の原点Oを極、x軸の正の部分を始線とする極座標(r,\ \theta)を考える。\\
k \gt 0として、極方程式\\
r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k (0 \leqq \theta \leqq \frac{\pi}{2})\\
で表される曲線をC(k)とする。曲線C(k)上の点を直交座標(x,\ y)で表せばxの\\
とりうる値の範囲は、\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }\ である。\\
曲線C(k)とx軸、y軸で囲まれた図形の面積をS(k)とおけば、S(k)=\boxed{\ \ ウ\ \ }\ \\
でなる。直交座標が(\frac{k}{4},\ \frac{k}{4})である曲線\ C(k)上の点Aにおける曲線C(k)の接線l\\
の方程式は、y=\boxed{\ \ エ\ \ }となる。曲線\ C(k)と直線l、およびx軸で囲まれた\\
図形の面積をT(k)とおけば、S(k)=\boxed{\ \ オ\ \ }\ T(k)が成り立つ。0 \lt m \lt nを\\
満たす実数m,nに対して、S(n)-S(m)がT(n)と等しくなるのは、\\
\\
\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}\ のときである。\\
\\
\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }の解答群\\
⓪\sqrt k ①k ②k^2 ③\frac{\sqrt 2}{2} ④\frac{\sqrt 2}{3} \\
⑤\frac{k}{2} ⑥\frac{k}{3} ⑦\frac{k^2}{4} ⑧\frac{k^2}{5} ⑨\frac{k^2}{6} \\
\\
\boxed{\ \ エ\ \ }\ の解答群\\
⓪x+\frac{k}{2} ①x+\frac{k}{4} ②-x+\frac{k}{2} ③-x+\frac{k}{4} ④2x-\frac{k}{2} \\
⑤2x-\frac{k}{4} ⑥2x-\frac{3k}{4} ⑦-2x+\frac{k}{2} ⑧-2x+\frac{k}{4} ⑨-2x+\frac{3k}{4}
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 座標平面の原点Oを極、x軸の正の部分を始線とする極座標(r,\ \theta)を考える。\\
k \gt 0として、極方程式\\
r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k (0 \leqq \theta \leqq \frac{\pi}{2})\\
で表される曲線をC(k)とする。曲線C(k)上の点を直交座標(x,\ y)で表せばxの\\
とりうる値の範囲は、\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }\ である。\\
曲線C(k)とx軸、y軸で囲まれた図形の面積をS(k)とおけば、S(k)=\boxed{\ \ ウ\ \ }\ \\
でなる。直交座標が(\frac{k}{4},\ \frac{k}{4})である曲線\ C(k)上の点Aにおける曲線C(k)の接線l\\
の方程式は、y=\boxed{\ \ エ\ \ }となる。曲線\ C(k)と直線l、およびx軸で囲まれた\\
図形の面積をT(k)とおけば、S(k)=\boxed{\ \ オ\ \ }\ T(k)が成り立つ。0 \lt m \lt nを\\
満たす実数m,nに対して、S(n)-S(m)がT(n)と等しくなるのは、\\
\\
\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}\ のときである。\\
\\
\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }の解答群\\
⓪\sqrt k ①k ②k^2 ③\frac{\sqrt 2}{2} ④\frac{\sqrt 2}{3} \\
⑤\frac{k}{2} ⑥\frac{k}{3} ⑦\frac{k^2}{4} ⑧\frac{k^2}{5} ⑨\frac{k^2}{6} \\
\\
\boxed{\ \ エ\ \ }\ の解答群\\
⓪x+\frac{k}{2} ①x+\frac{k}{4} ②-x+\frac{k}{2} ③-x+\frac{k}{4} ④2x-\frac{k}{2} \\
⑤2x-\frac{k}{4} ⑥2x-\frac{3k}{4} ⑦-2x+\frac{k}{2} ⑧-2x+\frac{k}{4} ⑨-2x+\frac{3k}{4}
\end{eqnarray}
2021明治大学全統過去問
福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積
単元:
#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件
単元:
#数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 極値(1)\\
f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}の範囲で\\
極大値をもつように定数aの値の範囲を定めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 極値(1)\\
f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}の範囲で\\
極大値をもつように定数aの値の範囲を定めよ。
\end{eqnarray}
【数Ⅲ】微分法:媒介変数で表された関数の2回微分
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xの関数yが、$\theta$を媒介変数として、$x=\cos\theta-1、y=2\sin\theta+1$と表される時、$\dfrac{d^2y}{dx^2}$を$\theta$の関数として表そう。
この動画を見る
xの関数yが、$\theta$を媒介変数として、$x=\cos\theta-1、y=2\sin\theta+1$と表される時、$\dfrac{d^2y}{dx^2}$を$\theta$の関数として表そう。
福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積
単元:
#微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 関数f(x)=\frac{1}{2}(x+\sqrt{2-3x^2}) の定義域は-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}であり、\\
f(x)はx=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}のとき、最大値\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}をとる。曲線y=f(x)、\\
\\
直線y=2xおよびy軸で囲まれた図形の面積は\boxed{\ \ ケ\ \ }となる。\\
\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\frac{\sqrt3}{18}\pi ①\frac{\sqrt3}{36}\pi ②\frac{\sqrt3}{72}\pi ③\frac{1}{6}+\frac{\sqrt3}{36}\pi ④\frac{1}{24}+\frac{\sqrt3}{36}\pi\\
⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 関数f(x)=\frac{1}{2}(x+\sqrt{2-3x^2}) の定義域は-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}であり、\\
f(x)はx=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}のとき、最大値\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}をとる。曲線y=f(x)、\\
\\
直線y=2xおよびy軸で囲まれた図形の面積は\boxed{\ \ ケ\ \ }となる。\\
\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\frac{\sqrt3}{18}\pi ①\frac{\sqrt3}{36}\pi ②\frac{\sqrt3}{72}\pi ③\frac{1}{6}+\frac{\sqrt3}{36}\pi ④\frac{1}{24}+\frac{\sqrt3}{36}\pi\\
⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi
\end{eqnarray}
福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題
単元:
#数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系075〜平均値の定理(3)近似値計算の問題
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(3)\\
\log4=1.3863を用いて\log4.03の値を小数第4位まで求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 平均値の定理(3)\\
\log4=1.3863を用いて\log4.03の値を小数第4位まで求めよ。
\end{eqnarray}
福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} tを0 \leqq t \leqq \frac{\pi}{2}を満たす定数とする。関数\\
f(x)=|\sin x-\sin t| (0 \leqq x \leqq \pi)\\
について、以下の問いに答えよ。\\
(1)t=\frac{\pi}{6}のときy=f(x) (0 \leqq x \leqq \pi)のグラフを描け。\\
\\
(2)y=f(x) (0 \leqq x \leqq \pi)のグラフとx軸、y軸および直線x=\pi\\
で囲まれた図形の面積をSとする。Sをtを用いて表せ。\\
\\
(3)tが\leqq t \leqq \frac{\pi}{2}の範囲を動くときのSの最大値と最小値を求めよ。
\end{eqnarray}
2021青山学院大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} tを0 \leqq t \leqq \frac{\pi}{2}を満たす定数とする。関数\\
f(x)=|\sin x-\sin t| (0 \leqq x \leqq \pi)\\
について、以下の問いに答えよ。\\
(1)t=\frac{\pi}{6}のときy=f(x) (0 \leqq x \leqq \pi)のグラフを描け。\\
\\
(2)y=f(x) (0 \leqq x \leqq \pi)のグラフとx軸、y軸および直線x=\pi\\
で囲まれた図形の面積をSとする。Sをtを用いて表せ。\\
\\
(3)tが\leqq t \leqq \frac{\pi}{2}の範囲を動くときのSの最大値と最小値を求めよ。
\end{eqnarray}
2021青山学院大学理工学部過去問
福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題
単元:
#関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(2)\\
極限値\\
\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}\\
\\
を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 平均値の定理(2)\\
極限値\\
\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}\\
\\
を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系073〜平均値の定理(1)不等式の証明
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 平均値の定理(1)\\
0 \lt a \lt b のとき\\
1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1\\
を証明せよ。
\end{eqnarray}
福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。 (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}
2021上智大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。 (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}
2021上智大学理系過去問
福田のわかった数学〜高校3年生理系072〜接線(4)共通接線(2)
単元:
#数Ⅱ#微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(4) 共通接線(2)\\
2曲線y=x^2とy=\frac{1}{x}の両方に接する直線の方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 接線(4) 共通接線(2)\\
2曲線y=x^2とy=\frac{1}{x}の両方に接する直線の方程式を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系071〜接線(3)共通接線(1)
単元:
#微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(3) 共通接線(1)\\
2曲線\ y=e^xとy=\sqrt{x+a}がともに点Pを通り、点Pにおいて共通の\\
接線をもつとき、aの値と接線の方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 接線(3) 共通接線(1)\\
2曲線\ y=e^xとy=\sqrt{x+a}がともに点Pを通り、点Pにおいて共通の\\
接線をもつとき、aの値と接線の方程式を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線
単元:
#平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right. \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right. \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
この動画を見る
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
福田のわかった数学〜高校3年生理系069〜接線(1)陰関数の接線
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(1) 陰関数の定義\\
\\
曲線 \sqrt x+\sqrt y=1\\
\\
上の点P(\frac{1}{4},\ \frac{1}{4})における接線および\\
\\
法線の方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 接線(1) 陰関数の定義\\
\\
曲線 \sqrt x+\sqrt y=1\\
\\
上の点P(\frac{1}{4},\ \frac{1}{4})における接線および\\
\\
法線の方程式を求めよ。
\end{eqnarray}
【数Ⅲ】微分法:三角関数の微分公式+演習
単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
この動画を見る
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 立方体OADB-CFGEを考える。0 \leqq x \leqq 1となる実数xに対し、\overrightarrow{ OP }=x\ \overrightarrow{ OG }と\\
なる点Pを考え、\angle APB=\thetaとおく。\\
\\
(1)x=0のとき、\theta=\boxed{\ \ し\ \ }\ である。また、x=1のとき、\theta=\boxed{\ \ す\ \ }\ である。\\
\\
\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }\ の選択肢\\
(\textrm{a})0 (\textrm{b})\frac{\pi}{6} (\textrm{c})\frac{\pi}{3} (\textrm{d})\frac{\pi}{2}\\
(\textrm{e})\frac{2}{3}\pi (\textrm{f})\frac{5}{6}\pi (\textrm{g})\pi \\
\\
(2)0 \lt x \lt 1の範囲で\theta=\frac{\pi}{2}となるxの値は、x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }} である。\\
\\
(3)y=\cos\thetaとおき、yをxの関数と考える。このとき、yをxで表せ。また、\\
0 \leqq x \leqq 1の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・\\
座標軸との共有点・極値・変曲点などを明らかにせよ。
\end{eqnarray}
2021上智大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 立方体OADB-CFGEを考える。0 \leqq x \leqq 1となる実数xに対し、\overrightarrow{ OP }=x\ \overrightarrow{ OG }と\\
なる点Pを考え、\angle APB=\thetaとおく。\\
\\
(1)x=0のとき、\theta=\boxed{\ \ し\ \ }\ である。また、x=1のとき、\theta=\boxed{\ \ す\ \ }\ である。\\
\\
\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }\ の選択肢\\
(\textrm{a})0 (\textrm{b})\frac{\pi}{6} (\textrm{c})\frac{\pi}{3} (\textrm{d})\frac{\pi}{2}\\
(\textrm{e})\frac{2}{3}\pi (\textrm{f})\frac{5}{6}\pi (\textrm{g})\pi \\
\\
(2)0 \lt x \lt 1の範囲で\theta=\frac{\pi}{2}となるxの値は、x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }} である。\\
\\
(3)y=\cos\thetaとおき、yをxの関数と考える。このとき、yをxで表せ。また、\\
0 \leqq x \leqq 1の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・\\
座標軸との共有点・極値・変曲点などを明らかにせよ。
\end{eqnarray}
2021上智大学理工学部過去問
【数Ⅲ】微分法:指数対数の微分、演習
単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう
(1)$y=\log(x^2+1)$ (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$ (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$ (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$ (14)$y=\log_3\dfrac{x}{3^x}$
この動画を見る
次の関数を微分しよう
(1)$y=\log(x^2+1)$ (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$ (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$ (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$ (14)$y=\log_3\dfrac{x}{3^x}$
福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式
単元:
#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の (\textrm{b})K未満の \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての (\textrm{b})ある \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1 \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ \\(\textrm{b})成り立つような実数Kが存在する \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}
2021上智大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の (\textrm{b})K未満の \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての (\textrm{b})ある \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1 \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ \\(\textrm{b})成り立つような実数Kが存在する \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}
2021上智大学理工学部過去問
福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積
単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問