約数・倍数・整数の割り算と余り・合同式
津田塾大 基本対称式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.
2016津田塾大過去問
この動画を見る
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.
2016津田塾大過去問
聖マリアンナ医大 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$x,y,z$は整数である.
$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$であることを示せ.
2016聖マリアンナ医大過去問
この動画を見る
$p$は素数であり,$x,y,z$は整数である.
$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$であることを示せ.
2016聖マリアンナ医大過去問
整数問題2021
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021^{2021^{2021}}$の下3桁を求めよ.
この動画を見る
$2021^{2021^{2021}}$の下3桁を求めよ.
2021!を5の504乗で割ったあまり
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る
$2021!$を$5^{504}$で割った余りを求めよ.
旭川医科大 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.
2015旭川医科大過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.
2015旭川医科大過去問
合同式の基本 2021問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021^{2021}$を$15$で割った余りを求めよ.
この動画を見る
$2021^{2021}$を$15$で割った余りを求めよ.
芝浦工大 1の4n+1乗根
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$z^{4n+1}=1$の相異なる解を$1,\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}$とする.
$\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}=\Box$
$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$
$\Box$を求めよ.
芝浦工大過去問
この動画を見る
$n$は自然数とする.
$z^{4n+1}=1$の相異なる解を$1,\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}$とする.
$\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}=\Box$
$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$
$\Box$を求めよ.
芝浦工大過去問
北海道大 数1
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{x}$の小数部分が$\dfrac{x}{2}$に等しくなるような正の数$x$をすべて求めよ.
ただし,正の数$a$の部分とは,$a$を越えない最大の整数$n$との差$a-n$のことをいう.
北海道大過去問
この動画を見る
$\dfrac{1}{x}$の小数部分が$\dfrac{x}{2}$に等しくなるような正の数$x$をすべて求めよ.
ただし,正の数$a$の部分とは,$a$を越えない最大の整数$n$との差$a-n$のことをいう.
北海道大過去問
奇数が分母の数列の和に突如あれが登場
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\Box$を求めよ.
$\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+・・・・・・=\dfrac{\Box}{4}$
この動画を見る
$\Box$を求めよ.
$\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+・・・・・・=\dfrac{\Box}{4}$
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数である.
$8^{q-1}-1=pq^2$の$(p,q)$を求めよ.
この動画を見る
$p,q$は異なる素数である.
$8^{q-1}-1=pq^2$の$(p,q)$を求めよ.
慶應義塾高校 入試問題 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{3007}{3201}$を既約分数にせよ.
2020慶應義塾高過去問
この動画を見る
$\dfrac{3007}{3201}$を既約分数にせよ.
2020慶應義塾高過去問
999C n が5の倍数になる最小のn
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
この動画を見る
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
一橋大(1)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.
1991一橋大過去問
この動画を見る
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.
1991一橋大過去問
東大 2015 独自解法
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ {}_{2015}\mathrm{C}_{m}$が偶数となる最小の$m$を求めよ.
$1\leqq m\leqq 2015$であり,$m$は自然数とする.
2015東大過去問
この動画を見る
$ {}_{2015}\mathrm{C}_{m}$が偶数となる最小の$m$を求めよ.
$1\leqq m\leqq 2015$であり,$m$は自然数とする.
2015東大過去問
333‥‥33が2021の倍数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
この動画を見る
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
名古屋大 分野不明
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$
(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.
2019名古屋大過去問
この動画を見る
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$
(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.
2019名古屋大過去問
【数A】整数の性質:次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。・a,b,cの最大公約数は6・b,cの最大公約数は24最小公倍数は144・a,bの最小公倍数は240(a<b<c)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。
・a,b,cの最大公約数は6
・b,cの最大公約数は24最小公倍数は144
・a,bの最小公倍数は240(a<b<c)
この動画を見る
次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。
・a,b,cの最大公約数は6
・b,cの最大公約数は24最小公倍数は144
・a,bの最小公倍数は240(a<b<c)
【数A】整数の性質:√n²+40が自然数となるような自然数nをすべて求めよ。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{n^2+40}$が自然数となるような自然数nをすべて求めよ。
この動画を見る
$\sqrt{n^2+40}$が自然数となるような自然数nをすべて求めよ。
山口大 フェルマー素数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$n \geqq 0$,$F_n=2^{2^n}+1$とする.
(1)$F_{n+1}=F_0F_1F_2・・・・・・F_n+2$を示せ.
(2)$m\neq n$であり,$F_m$と$F_n$は互いに素を示せ.
2005山口大過去問
この動画を見る
整数$n \geqq 0$,$F_n=2^{2^n}+1$とする.
(1)$F_{n+1}=F_0F_1F_2・・・・・・F_n+2$を示せ.
(2)$m\neq n$であり,$F_m$と$F_n$は互いに素を示せ.
2005山口大過去問
同志社大 最大公約数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2^{32}+1$と$2^{16}+1$の最大公約数を求めよ.
2002同志社大過去問
この動画を見る
$2^{32}+1$と$2^{16}+1$の最大公約数を求めよ.
2002同志社大過去問
素数判定
単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$30^{17}+17^{30}$は素数か.
この動画を見る
$30^{17}+17^{30}$は素数か.
京都大 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数であり,$d,p$は素数である.
$a^p-b^p=d$ならば$d$を$2p$で割った余りは1であることを示せ.
1995京都大過去問
この動画を見る
$a,b$は自然数であり,$d,p$は素数である.
$a^p-b^p=d$ならば$d$を$2p$で割った余りは1であることを示せ.
1995京都大過去問
数学オリンピック予選 合同式の「割り算‼️」
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.
数学オリンピック過去問
この動画を見る
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.
数学オリンピック過去問
【数A】整数の性質:合同式② a,bは3で割り切れない整数とする。このとき、a⁴+a²b²+b⁴は3で割り切れることを証明せよ。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bは3で割り切れない整数とする。このとき、$a^4+a^2b^2+b^4$は3で割り切れることを証明せよ。
この動画を見る
a,bは3で割り切れない整数とする。このとき、$a^4+a^2b^2+b^4$は3で割り切れることを証明せよ。
【数A】整数の性質:合同式① 整数a,b,cがa²+b²=c²を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)整数a,b,cが$a^2+b^2=c^5$を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
(2)nが自然数のとき、$n^3+1$が3で割り切れるものをすべて求めよ。
この動画を見る
(1)整数a,b,cが$a^2+b^2=c^5$を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
(2)nが自然数のとき、$n^3+1$が3で割り切れるものをすべて求めよ。
19愛知県教員採用試験(数学:4番 整数問題(数列系))
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
4⃣$N=\mathbb{ p }^n×5^n$
(1)正の約数の個数が8個
(2)正の約数の総和が90のとき、$\mathbb{ p }$とNを求めよ。
この動画を見る
4⃣$N=\mathbb{ p }^n×5^n$
(1)正の約数の個数が8個
(2)正の約数の総和が90のとき、$\mathbb{ p }$とNを求めよ。
千葉大 n次方程式の整数解
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$n\geqq 2$は自然数とする.
$x^n-p^n x-p^{n+1}=0$は整数解をもたないことを示せ.
2009千葉大過去問
この動画を見る
$P$は素数であり,$n\geqq 2$は自然数とする.
$x^n-p^n x-p^{n+1}=0$は整数解をもたないことを示せ.
2009千葉大過去問
漸化式と整数の融合問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.
この動画を見る
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.
16愛知県教員採用試験(数学:2番 整数問題)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣自然数$N=2^a×3^b$の
(1)正の約数の個数が20コ
(2)正の約数の総和が1240をみたすa,bの値を求めよ。
この動画を見る
2⃣自然数$N=2^a×3^b$の
(1)正の約数の個数が20コ
(2)正の約数の総和が1240をみたすa,bの値を求めよ。
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^{7^{7^{7^{7^{7}}}}}$を$13$で割った余りを求めよ.
この動画を見る
$7^{7^{7^{7^{7^{7}}}}}$を$13$で割った余りを求めよ.